车刀报废后的故事
今天在线上忙活时,听到一车加工中,怪叫声是一声接一声。当时也没反应过来,硬质合金刀具修磨,主要是一车加工时,都会出现因切削用量太大而---叽叽的声响。或是切削所消耗功率过大,引起v带短暂打滑的声响…唔…唔…。(厂里的车床都是v带直联主轴的,v带也非一般v带,里边的抗拉体为钢丝)这些声响早都习惯了,仅仅保全人员偶尔会报怨v带咋这个简单坏了?顷刻,一车就报警啦!曩昔一看,nc反常!主轴不动!想想这个警,经常报,没大联系,直接找保全来,好处理的很!
---保全师傅来了,当安全门打开的一瞬,眼前的一幕让---吃一惊,刀片崩成两节,内孔车刀的刀杆现已死死的陷在工件的内孔里边,任凭保全师傅用多大的铜锤敲击,刀杆都纹丝不动,终只好把刀具从刀盘上下了下来,拿维修班吹焊去了!我想刀具是必定废了,好歹也值一千多块钱啊!就让我给遇上了!唉…
咱们疑问,刀具这个惨烈的作废,必定是有原因的。这儿在介绍原因前,就让我来叙述一下刀具的详细模样。这把内孔车刀,切当说应该叫深孔车刀才妥贴,由于其长径比现已远远大于5了,其刀杆蕞前端也就15个毫米左右吧!从蕞前端往后端慢慢增大,刀杆上面开有两条螺旋槽,两条螺旋槽的前面,各开了三个定位面,用来装置左右对称两块刀片(刀片很小,用螺丝固定)。反正跟麻花钻多像的。咱们听来,这把车刀规划相当的合理嘛!左右对称两刀片,切削时,力的大小是相等,方向相反,刚好形成一力偶,避免了刀杆单侧受力,引起的悬臂梁曲折变形,并且左右两刀片一起承担切削使命,硬质合金刀具材料,刀片的切削条件天然要好的多。已然规划上没有问题,为啥仍是这个惨烈的作废了呢?这儿边就要从车刀执役的历史讲起了。
车刀买回来后,天然是很---了,但一次小小意外,一侧的刀片崩了。崩了就崩了嘛!一样持续切削没问题了,没什么大不了的。关键是当工人师傅准备换新刀片时,发现刀片的定位面现已破坏了,无法装置刀片了,这样就剩余一个刀片孤孤单单战斗了。按说现在只剩一个刀片了,切削用量应该减一减才对,不过这是理论上的,切削用量嘛,必定只有增没的减啦!否则单件切削时刻会延伸的,否则功率又低了。至于刀具寿数了,这个我就不晓得改没改了。改小了,我看用途也不大,总有那么一个刀片不到寿数就崩了的,一崩刀杆就完蛋。就这样,单侧刀刃切削了一个来月吧!效果---啦!从没崩过,功率也没落下,认为从此能够天常地久了。不过今天就崩了,崩了后,硬质合金刀具,刀杆持续进给,主轴持续滚动,仅仅这次一块刀片也没了,螺旋槽上开出的定位面做为刀具前刀面持续车削,终刀杆就死死的陷在工件的内孔里了,主轴直接中止滚动,然后报警,终刀具就惨烈的---了!
车刀惨烈的作废了,咱们可能要疑问了,不就作废一把车刀嘛?还有啥后续故事,换把新的持续。不过真不好意思,库房里没有。咱们这儿又想说:“哪买把新的”。还真不好意思,真的不好买,不是市面上没有这种车刀,而是国企的制度啊!买一把车刀要报要批,要找这个---签字,要找哪个---签字,费事死了。买这把车刀的时刻,少者等个把星期,多者就遥遥无期了。
想想每天这个重的生产使命,靠等新刀的到来,仍是死了这条心吧!这不,车刀作废不到一小时,部门的工艺---,车间工艺技术员,就把地点---床围满了。不过这件事功率仍是挺高的,半天后,车间主任就叫我回原来的生产线持续干活了。哪这儿就让咱们来看看---是怎么处理这个扎手问题的了。
说来很简单啊!直接换了把很一般的内孔车刀,(主体就是一圆杆,前面装置一块小刀片哪种,再一般不过了)然后调整了一下每把车刀的刀---就好啦!是啊!确实是好了,反正是粗车刀,加工出来的孔直径小了,没事!内孔表面布满了一条又一条很---的螺旋型震痕,也没事!(现已不能用震纹来描述了,由于波峰与波谷间的高度都能够用毫米计量了)说来也是,反正是粗车刀,对加工出来孔的直径及表面没啥要求,精车余量也是足够的,不会对后续工序产生多大影响。哪还等什么,用就用吧!仅仅车削内孔时---的声响,比---还刺耳几倍啊!真苦了我的耳朵了,可真真正正的苦恼还在后边了!
前面我现已说了,这把车刀是用来加工深孔的,上把车刀在坏了后,---换了一把一般的内孔车刀,新车刀除了悬伸量很长外,没有什么共同之处。哈哈!问题就出在这儿了,新车刀悬伸量太大,刚度极差啊!加工出来的孔小了,表面太差,加工过程中切削声响太刺耳,这儿就不谈了。而在我接连加工了十来个工件后,还发现了一个新缺陷,哪就是崩刀片啊!有时做一个零件就崩了,有时做几个又崩了,搞的我很动火啊!刀片换个---了。不一会,---散了的---些又聚了过来了。这儿,咱们就不看---咋处理这个问题了,咱们自己来理论谈讨一下。
上面所谈到的一切加工问题,原因都在新装置的内孔车刀的刚度太差。而进步内孔车刀刚度,减小车刀轰动。在我看来,方法无非三种,下面依次讨论一下。
---种方法,咱们首先翻书<材料力学>,上面说了,想进步悬臂梁的刚度,在这儿就要加大刀杆直径,削减悬伸量。不过这个还真行不通,工艺条件决议了,刀杆直径不能再小了,悬伸量不能再短了。已然这些条件无发改动了,哪咱们就选个弹性模量较大的刀杆来进步刀杆刚度总行了吧!不过又觉得钢材的弹性模量都差不多,没啥---啊!哪咱们就把<材料力学>放一放,看看其它的。
第二种方法,翻书<金属切削原理与刀具>,不过这儿,咱们先来了解一下新车刀装置好后,刀片各个独立的视点。---眼就看出来,刀尖圆弧半径太大了,形成背向力很大,所以引起轰动。再仔细看看,刀具主偏角差点快一百度了,切削时,刀尖先触摸工件,所以简单崩了。再看看,如同仍是个正直刃倾角,前角也太小了,副偏角也很小啊!哎呀!不看了不看了,刀具视点问题---的有了。
第三种方法,咱们接着翻书<机械制造基础>。这儿咱们就能够减小切削用量嘛!不过这种方法不可行,由于在厂里,功率是很重要的。当然了,还能够改动工艺道路了,详细说来就是把粗车孔这个工步,改成一道工序,用钻床钻了,只要余量够,也不怕粗基准运用两次(三爪卡盘夹持外圆了,定位基准面为毛丕外圆),但是这也不行了,由于这儿是标准化企业,没通用机床。说了这个多,咱们仍是来看看技术员又是哪个处理这个问题的呢?
哈哈!换了块三角形刀片,刀片的视点变了。详细说来前角和副偏角变大了,主偏角和刀尖圆弧半径都变小了,刃倾角也变成了零度。车刀刀杆也换了,换了把重的,比原来哪把车刀重多了,我想弹性模量必定大了不少吧!试切了十来个工件,轰动小了许多,刀片也没崩。哪还等什么啊!持续操机!
活塞环主要分为气环和油环两种。
活塞环的作用
气环的作用是---气缸与活塞间的密封性,防止漏气,并且要把活塞顶部吸收的大部分热量传给气缸壁,由冷却水带走;油环起布油和刮油的作用,下行时刮除气缸壁上多余的机油,上行时在气缸壁上铺涂一层均匀的油膜。这样既可以防止机油窜入气缸中燃烧掉,又可以减少活塞与气缸壁的摩擦阻力。此外,油环还能起到辅助封气的作用。
活塞环的工作条件及性能要求
活塞环工作时受到气缸中高温、高压燃气的作用,温度较高(尤其是,温度可达600k)。活塞环在气缸内做高速运动,加上高温下部分机油出现变质,使活塞环的润滑条件变差,难以---液体润滑,磨损---。因此,要求活塞环弹性好,强度高、耐磨损。
活塞环的间隙
活塞环会在发动机运转过程中与高温气体接触发生热膨胀现象,而周期性的往复运动又使其出现径向胀缩变形。因此,为了---正常的工作,活塞环在气缸内应该具有以下间隙。
d—活塞环内径;b—活塞环宽度
*** 端隙又称开口间隙,是指活塞环在冷态下装入气缸后,该环在上止点时,环的两端头之间的间隙。一般为0.25~0.50mm。
*** 侧隙又称边隙,是指活塞环装入活塞后,其侧面与活塞环槽之间的间隙。第道环因为工作温度高,间隙较大,一般为0.04~0.10mm;其他环一般为0.03~0.07mm。油环侧隙比气环小。
*** 背隙是指活塞环装入气缸后,活塞环内圆柱面与活塞环槽底部间的间隙,一般为0.50~1.00mm。油环背隙较气环大,有利于增大存油间隙,硬质合金刀具制造,便于减压泄油。
活塞环的泵油作用
由于侧隙和背隙的存在,当发动机工作时,活塞环便产生了泵油作用。其原因是,活塞下行时,活塞环靠在环槽的上方,活塞环从缸壁上刮下来的机油充入环槽下方;当活塞上行时,活塞环又靠在环槽的下方,同时将机油挤压到环槽上方。如此反复运动,就将缸壁上的机油泵入燃烧室。由于活塞环的泵油作用,使机油窜入燃烧室,会使燃烧室内形成积炭和增加机油消耗,并且还可能在环槽(尤其是第道气环槽)中形成积炭,使环卡死,失去密封作用,甚至折断活塞环。
气 环
*** 气环的密封机理
活塞环有一个切口,且在自由状态下不是圆环形,其外形尺寸比气缸的内径大些,因此,它随活塞一起装入气缸后,便产生弹力而紧贴在气缸壁上。
活塞环在燃气压力作用下,压紧在环槽的下端面上,于是燃气便绕流到环的背面,并发生膨胀,其压力下降。同时,燃气压力对环背的作用力使活塞环更紧地贴在气缸壁上。压力已有所降低的燃气,从第道气环的切口漏到第二道气环的上平面时,又把这道气环压贴在第二环槽的下端面上,于是,燃气又绕流到这个环的背面,再发生膨胀,其压力又进一步降低。
如此继续进行下去,从后一道气环漏出来的燃气,其压力和流速已经---减小,因而泄漏的燃气量也就很少了。因此,为数很少的几道切口相互错开的气环所构成的“迷宫式”封气装置,就---对气缸中的高压燃气进行有效的密封。
气环的断面形状及各环间隙处的气体压力
*** 气环的切口
气缸内的燃气漏入曲轴箱的主要通路是活塞环的切口,因此,切口的形状和装入气缸后的间隙大小对于漏入曲轴箱的燃气量有一定的影响,切口间隙过大,则漏气---,使发动机功率减小;间隙过小,活塞环受热膨胀后就有可能卡死或折断。切口间隙值一般为0.25~0.8mm。第道气环的温度,因而其切口间隙值。
气环的切口形状
直角形切口工艺性好;阶梯形切口的密封性好,但工艺性较差;斜口形切口,斜角一般为30°或45°,其密封作用和工艺性均介于前两种之间,但其锐角部位在套装入活塞时容易折损;图中(d)为二冲程发动机活塞环的带防转销钉槽的切口,压配在活塞环槽中的销钉,是用来防止活塞环在工作中绕活塞中心线转动的。
*** 气环断面形状
气环的断面形状
*** 矩形环的优点是结构简单、制造方便、散热性好、废品率低;缺点主要是有泵油作用,容易造成机油消耗量过大并有可能形成燃烧室积炭。另外,矩形环的刮油性、磨合性及密封性较差,现代汽车基本不采用。
*** 锥面环的优点是与气缸壁的接触为线接触,密封和磨合性能较好,刮油作用明显,容易形成油膜以---润滑;缺点是传热性能较差。锥面环主要应用在除第道环外的其他环。
*** 扭曲环是当代汽车发动机广泛应用的一种活塞环,主要是因为扭曲环除具有锥面环的优点之外,还能减小泵油作用,减轻磨损、提高散热性能。安装扭曲环时应---注意:内圆切槽向上,外圆切槽向下,不能装反。
*** 梯形环的主要优点是能把沉积在环槽中的结焦挤出,从而避免了活塞环被黏结而出现折断,同时其密封性能---,使用---;缺点主要是上下两端面的精磨工艺较复杂。梯形环在热负荷较大的柴油发动机上使用较多。
*** 桶面环的优点是活塞的上下行程都可以形成楔形油膜以---润滑,对活塞在气缸内摆动的适应性好,接触面积小,有利于密封;缺点是凸圆弧面加工困难,多用于强化柴油发动机的第道环。
油 环
油环分为普通油环和组合油环两种。
普通油环是用合金铸铁制造的。其外圆面的中间切有一道凹槽,在凹槽底部加工出很多穿通的排油小孔或狭缝。油环上唇的上端面外缘一般均有倒角,可以使油环向上运动时能够形成油楔。机油可以把油环推离气缸壁,从而易于进入油环的切槽内。下唇的下端面外缘不倒角,这样向下刮油能力较强。鼻式油环和双鼻式油环的刮油能力---,但加工较困难。
油环及其刮油作用
油环的断面形状
对于由三个刮油钢片和两个弹性衬环组成的组合式油环,轴向衬环夹装在第二、第三刮油片之间,径向衬环使三个刮油片压紧在气缸壁上。这种油环的优点是,片环薄,对气缸壁的比压(单位面积上的压力)大,因而刮油作用强;三个刮油片是各自独立的,故对气缸的适应性好;重量轻;回油通路大。因此,组合油环在高速发动机上得到较广的应用。其缺点是制造成本高(片环的外表面必须镀铬,否则滑动性不好)。
1.概述
通常,人们把含铬量>12%或含镍量>8%的合金钢称为不锈钢。这种钢在---中或在腐蚀性介质中具有一定的耐腐蚀能力,并在较高温度(>450℃)下具有较高的强度。含铬量达16%~18%的钢,称为耐酸钢或耐酸不锈钢,通称为不锈钢。
含铬量达12%以上的钢在与氧化性介质接触时,由于电化学作用,表面形成一层富铬氧化膜,可保护金属内部不受腐蚀。但在非氧化性腐蚀介质中,不能形成坚固的钝化膜。为提高钢的耐腐蚀能力,通常选择增大铬的比例或添加可促进钝化的合金元素,如添加ni、mo、mn、cu、nb、ti、w和co等。这些合金元素不仅提高了钢的抗腐蚀能力,同时改变了钢的内部组织和物理力学性能。其在钢中的含量不同,对不锈钢性能产生的影响不同,有的有磁性,有的则无磁性,有的能够进行热处理,有的则不能进行热处理。
不锈钢被越来越广泛地应用于航空、航天、化工、石油、建筑以及食品机械行业中。其所含的合金元素对切削加工性能影响较大,文中主要对不锈钢的切削加工进行了分析。
2.不锈钢的分类及性能
(1)按不锈钢主要成分,分为以铬为主的铬不锈钢和以铬、镍为主的铬镍不锈钢两大类。
(2)按不锈钢金相组织分类:马氏体不锈钢。其含铬量为12%~18%,含碳量为0.1%~0.5%(有时达1%)。其硬度为170~217hbw,抗拉强度σb为540~1 079mpa,伸长率δ为10%~25%,热导率к为25.12w/(m·k)。常见的牌号有1cr13、2cr13、3cr13、4cr13、1cr17ni2、9cr18、9cr18mov和30cr13mo等。马氏体不锈钢通过淬火,可获得较高的硬度、强度和耐磨性。然而,当钢中含碳量低于0.3%时,组织不均匀,粘附性强,切削时易产生积屑瘤,且断屑困难,切削加工性较差。当含碳量达0.4%~0.5%时,切削加工性较好。铁素体不锈钢。其含铬量为12%~13%。硬度为177~228hbw,抗拉强度σb为363~451mpa,伸长率δ为20%~22%,热导率к为16.7w/(m·k)。加热冷却时组织稳定,不发生相变,所以不能进行热处理强化,只能靠变形强化,切削加工性相对较好。常见的牌号有0cr13、0cr17ti、0cr13si4nbre、1cr17、1cr17ti、1cr17mo2ti、1cr28以及1cr25ti等。奥氏体不锈钢。其含铬量为12%~25%,含镍量为7%~20%(或20%以上)。硬度为187~207hbw,抗拉强度σb为481~520mpa,伸长率δ为40%,热导率к为16.33w/(m·k)。典型牌号有1cr18ni9ti,其他还有00cr18ni10、0cr18ni12mo2ti、0cr18ni18mo2cu2ti、1cr14mn14ni、2cr13mn9ni4以及1cr18mn8ni5n等。由于奥氏体不锈钢含有较多的镍或锰,加热时组织不变,故淬火不能使其强化,可通过冷加工硬化来大幅度提高强度和硬度,其硬化程度为基体硬度的1.4~2.2倍,给下一次切削带来很大困难。其具有优良的力学性能和---的耐腐蚀能力,无磁性。奥氏体-铁素体双相不锈钢。与奥氏体不锈钢相似,仅在组织中含有一定量铁素体,常见牌号有0cr21ni5ti、1cr21ni5ti、1cr18mn10ni5mo3n、0cr17mn13mo2n、1cr17mn9ni3mo3cu2n、cr26ni17mo3cusin以及1cr18ni11si4alti等。这类不锈钢有硬度---的金属间化合物析出,强度比奥氏体不锈钢高,切削加工性能比奥氏体不锈钢更差。其硬度<277hbw,抗拉强度σb为589~736mpa,伸长率δ为18%~30%。沉淀硬化不锈钢。这类不锈钢因含有较高的铬、镍和极低的碳,还含有能起沉淀硬化作用的、铝、钛和钼等合金元素,其在回火时析出,产生沉淀硬化,具有---的硬度和强度。其硬度为363~388hbw,抗拉强度σb为1 138~1 324mpa,伸长率δ为5%~10%,这类钢具有---的耐腐蚀性能。常见牌号有0cr17ni4cu4nb、0cr17ni7al和0cr15ni7mo2al等。
3.不锈钢的切削特点
不锈钢的切削加工性能比45钢差。若以45钢的相对切削加工性kr为1,则奥氏体不锈钢的相对切削加工性kr为0.4,铁素体不锈钢的kr为0.48,马氏体不锈钢的kr为0.55。其中以奥氏体和奥氏体-铁素体双相不锈钢的切削加工性差,给切削加工带来很大困难,其特点如下:
(1)切削加工硬化---。以奥氏体和奥氏体+铁素体不锈钢的加工硬化现象为---,硬化层的硬度比基体硬度高1.4~2.2倍,其抗拉强度σb为1 470~1 960mpa。这类不锈钢塑性大(δ>35%),塑性变形时晶格扭曲,故强化系数大,且奥氏体不稳定,在切削力作用下,部分奥氏体转变为马氏体。
(2)切削力大。不锈钢的高温强度和硬度高且韧性大,故在切削时所消耗的能量大,即切削抗力大。以奥氏体不锈钢为例,在切削过程中温度---700℃时,其综合力学---于一般结构钢。加之其在切削过程中的塑性变形大、硬化现象---,增大了切削力,所以不锈钢的单位切削力为45钢单位切削力的1.25倍。
(3)切削温度高。由于不锈钢在切削时的塑性变形大,切屑与刀具间的摩擦大,加之其热导率仅为45钢热导率的1/3~1/4,散热条件差,大量切削热集中在切削区,在相同切削条件下,切削温度比切削45钢时高200℃。
硬质合金刀具-昂迈工具(在线咨询)-硬质合金刀具制造由常州昂迈工具有限公司提供。常州昂迈工具有限公司是一家从事“数控刀片,铣刀,钻头,丝攻制造修磨”的公司。自成立以来,我们坚持以“诚信为本,---经营”的方针,勇于参与市场的良性竞争,使“昂迈刀具,onmytooling”品牌拥有------。我们坚持“服务为先,用户”的原则,使昂迈工具在刀具、夹具中赢得了众的客户的---,树立了---的企业形象。 ---说明:本信息的图片和资料仅供参考,欢迎联系我们索取准确的资料,谢谢!
联系我们时请一定说明是在100招商网上看到的此信息,谢谢!
本文链接:https://tztz261837a2.zhaoshang100.com/zhaoshang/219861914.html
关键词: