刃口钝化的刀具切削刃描摹上的微观缺陷大幅缩减,刃口崩坏的几率大幅下降,能够延常刀具使用寿命50%-400%。因此,开展刀具刃口钝化的研讨对进步我国刀具产品的具有十分重要的含义。现在,国外的刀具制造厂已广泛选用刃口钝化技能,从国外引入的数控机床或者生产线所使用的刀具,其刃口已全部经过钝化处理,不只进步了工件外表,硬质合金刀具制造,下降了刀具成本,一起也带来了---的经济效益。刀具钝化办法有振荡钝化、磨粒尼龙刷法钝化、磁化法钝化和立式旋转钝化等,立式旋转钝化进程实际上是涣散固体颗粒对刀具刃口效果的进程。
含磨粒的刀具刃口钝化法具有重复性好、高和成本低一级特色,是现在首要选用的刀具刃口钝化办法,通过刀具和磨粒的相对运动实现刃口钝化,磨粒多选用金刚石、cbn和碳化硅颗粒等。现在,关于磨粒效果机理研讨的比较少,首要有冲击单颗磨粒、冲击多磨粒磨损、刀具和切屑间存在磨粒、磨料水射流和半固着磨粒等,重点研讨磨粒类型、磨粒尺寸和冲击速度对外表的影响规则,而关于涣散磨粒对工件外表效果机理的研讨更少。杨成虎研讨了多粒子重复冲击关于cr12钢的冲蚀磨损,选用实验与有限元模仿相结合的办法验证了有限元模型能够实在有效地模仿出冲蚀磨损的实际进程。利用非线性abaqus有限元软件研讨了磨粒冲蚀速率、冲蚀角和磨粒粒径对刀圈资料(h13钢)冲蚀磨损行为及残余应力的影响规则。张伟等运用abaqus软件树立了塑性资料微切削进程的有限元模型,研讨了磨粒冲蚀角度以及冲蚀速度对磨损率的影响,断定了微切削模型的适用冲蚀角范围。
为了取得合适的钝化刃口形状,进步切削进程的稳定性,需求研讨涣散固体磨粒对刀具刃口的钝化机理。本文选用abaqus有限元软件树立了单磨粒和多磨粒对刀具刃口效果的防真模型,研讨了单磨粒和多磨粒对刃口效果的能量、刃口形变、位移和磨粒速度改变等的影响规则,关于从微观角度知道磨粒钝化效果具有一定价值,为研讨刀具刃口钝化机理提供依据。
1 单磨粒钝化刃口防真模型的树立
依据立式旋转钝化法的基本特色,刀具在涣散固体磨粒中进行两级行星运动,刀具刃口与涣散固体磨粒不断进行磕碰冲击,使得刀具刃口钝化。刀具沿着一定的轨迹进行运动,而涣散固体磨粒的运动规则相对随机。因此,涣散固体磨粒对刀具刃口的钝化进程是十分复杂的。
作为非线性有限元处理工具,abaqus在处理复杂问题和模仿高度非线性问题上有---优势。选用abaqus软件树立磨粒对刀具刃口钝化的防真模型。
刀具钝化模型的简化:因为磨粒相关于刀具刃口要小得多,能够将刀具刃口看作---大,底端固定不动,粒子向刀具刃口冲击。
磨粒:磨粒选用80目碳化硅,颗粒形状设为球形。
刀具:选用硬质合金刀具,刀具刃口尺寸设为0.5mm×0.25mm×0.1mm。
网格划分:将刀具刃口与磨粒触摸部分的网格区域划分得略细,磨粒的母线布置种子数目为10,挑选显式线性三维应力单元c3d4。刀具刃口种子数目分别设为10和25,磨粒单元形状为tet(四面体),完成网格划分。
防真设置:触摸属性为contact,冲击速度设置为100m/s,核算剖析步时刻为5e-5s,设置20个剖析步,选用job模块进行求解。
2 单磨粒钝化刃口防真结果
(1)刀具刃口应力改变规则
单磨粒对刀具刃口效果的应力矢量云图见图1。由图可知,碳化硅磨粒在冲击刀具刃口时,刀具刃口外表会发生微小的变形,刃口遭到的应力巨细在触摸区以圆弧状向四周扩展,一起应力以触摸点为中心向四周逐步衰减。刃口被冲击的外表略微下凹,就像一个小球在地上砸出了一个坑相同。
图1 单磨粒对刀具刃口效果的应力散布
(2)刀具刃口的冲击区域与应力的关系
刀具刃口的冲击区域与应力的关系见图2。在刀具刃口冲击区域内,越靠近磨粒冲击点中心,刀具刃口应力越大;越远离磨粒与刃口的冲击区域,刀具刃口所受的应力越小。
(3)刀具刃口的位移改变规则
单磨粒对刀具刃口效果的位移曲线见图3。在刀具刃口钝化进程中,碳化硅磨粒与刃口的冲击十分时间短。当碳化硅磨粒从0时刻开端运动且当时刻到达7.5e-06s时,碳化硅磨粒的位移到达蕞大。尔后,磨粒开端反弹。
图2 到效果点中心的间隔所对应的应力关系
图3 刀具刃口的位移改变规则
(4)单磨粒速度改变规则
磨粒在与刃口触摸时,与刃口之间的效果速度逐步减小,随后反弹(见图4)。
图4 磨粒速度改变规则
3 多磨粒防真模型的树立及结果
选用三颗磨粒重复冲击,研讨多磨粒对刀具刃口的钝化。边界条件与资料参数及边界的界定与单磨粒模型共同。冲击速度为300m/s,多磨粒对刀具刃口钝化的防真模型见图5。
图5 多磨粒对刀具刃口效果的防真模型
(1)刀具刃口的应力散布
图6为地一颗磨粒对刀具刃口冲击的应力云图。由图可知,在地一剖析步t=2.5003e-06s时,刀具刃口无太大改变,受磨粒冲击的中心遭到的应力蕞大,蕞大应力值为2238mp;当第二颗磨粒对同一位置进行冲击后,刀具刃口所受应力区域显着增大,所产生的蕞大应力值为2341mpa;当第三颗磨粒冲击刀具刃口时,刀具刃口遭到的应力效果区域进一步增大,蕞大应力值为2440mpa,较前两次冲击有所进步。
图6 地一颗磨粒冲击刀具刃口的应力散布
(2)磨粒速度改变规则
多磨粒冲击刀具刃口的速度改变规则见图7。在0s时,地一颗磨粒开端与刀具刃口磕碰,随后磨粒速度开端下降,直至越过零点成为负值。磨粒速度为负是因为磨粒发生了回弹,磨粒对刀具刃口产生磨损。在1.0e-5s、2.0e-5s时,第二颗磨粒、第三颗磨粒分别与刀具刃口效果,效果方式和地一颗磨粒相同。
图7 三颗碳化硅磨粒速度改变规则
(3)刀具刃口的位移改变规则
刀具刃口在三颗磨粒冲击下的位移曲线见图8。地一颗碳化硅磨粒在对刀具刃口冲击后会构成一个的冲蚀坑,接着第二颗、第三颗磨粒重复冲击,冲蚀坑不断增大,多磨粒的冲击会使冲蚀坑越来越大。
图8 刀具刃口遭到重复冲击的位移改变
(4)多磨粒对刀具刃口效果的能量改变规则
刀具刃口钝化的进程也是能量交换的进程。因为刀具刃口与涣散固体磨粒不断地冲击磕碰,在钝化进程中发生了磨粒动能和刀具刃口内能的交换,其能量改变见图9。
图9 刀具刃口钝化的能量改变
由图9可知,碳化硅磨粒在触摸刀具刃口后速度开端下降,约在2e-05s时到达蕞低。磨粒的动能因为速度的减小而减小,大约在2e-05s时到达蕞低。一起,刀具刃口内能因为磨粒的冲击呈现出接连上升趋势,二者能量曲线基本对称,磨粒所消耗的动能基本转化成为刀具刃口内能,使得刀具刃口进行钝化。
小结
选用abaqus有限元剖析软件树立了磨粒对刀具刃口冲击的防真模型,研讨了磨粒冲击刀具刃口时磨粒速度、刃口应力、刃口位移和能量等的改变规则。首要定论如下:
(1)当单磨粒对刀具刃口进行钝化时,刀具刃口的应力在冲击区域以圆弧状向四周扩展。碳化硅磨粒与刃口的冲击十分时间短,磨粒从零时刻开端运动,当时刻到达7.5e-06s时,碳化硅磨粒的位移到达蕞大,尔后,磨粒开端反弹。
(2)当多碳化硅磨粒对刀具刃口进行不断冲击时,受力区域不断增大,刀具刃口所受应力增大,冲蚀坑不断增大。
活塞环主要分为气环和油环两种。
活塞环的作用
气环的作用是---气缸与活塞间的密封性,防止漏气,并且要把活塞顶部吸收的大部分热量传给气缸壁,由冷却水带走;油环起布油和刮油的作用,下行时刮除气缸壁上多余的机油,上行时在气缸壁上铺涂一层均匀的油膜。这样既可以防止机油窜入气缸中燃烧掉,又可以减少活塞与气缸壁的摩擦阻力。此外,油环还能起到辅助封气的作用。
活塞环的工作条件及性能要求
活塞环工作时受到气缸中高温、高压燃气的作用,温度较高(尤其是,温度可达600k)。活塞环在气缸内做高速运动,加上高温下部分机油出现变质,使活塞环的润滑条件变差,难以---液体润滑,磨损---。因此,要求活塞环弹性好,强度高、耐磨损。
活塞环的间隙
活塞环会在发动机运转过程中与高温气体接触发生热膨胀现象,而周期性的往复运动又使其出现径向胀缩变形。因此,为了---正常的工作,活塞环在气缸内应该具有以下间隙。
d—活塞环内径;b—活塞环宽度
*** 端隙又称开口间隙,是指活塞环在冷态下装入气缸后,该环在上止点时,环的两端头之间的间隙。一般为0.25~0.50mm。
*** 侧隙又称边隙,是指活塞环装入活塞后,其侧面与活塞环槽之间的间隙。第道环因为工作温度高,间隙较大,一般为0.04~0.10mm;其他环一般为0.03~0.07mm。油环侧隙比气环小。
*** 背隙是指活塞环装入气缸后,活塞环内圆柱面与活塞环槽底部间的间隙,一般为0.50~1.00mm。油环背隙较气环大,有利于增大存油间隙,便于减压泄油。
活塞环的泵油作用
由于侧隙和背隙的存在,当发动机工作时,活塞环便产生了泵油作用。其原因是,活塞下行时,活塞环靠在环槽的上方,活塞环从缸壁上刮下来的机油充入环槽下方;当活塞上行时,活塞环又靠在环槽的下方,同时将机油挤压到环槽上方。如此反复运动,就将缸壁上的机油泵入燃烧室。由于活塞环的泵油作用,使机油窜入燃烧室,会使燃烧室内形成积炭和增加机油消耗,并且还可能在环槽(尤其是第道气环槽)中形成积炭,使环卡死,失去密封作用,甚至折断活塞环。
气 环
*** 气环的密封机理
活塞环有一个切口,且在自由状态下不是圆环形,其外形尺寸比气缸的内径大些,因此,它随活塞一起装入气缸后,便产生弹力而紧贴在气缸壁上。
活塞环在燃气压力作用下,压紧在环槽的下端面上,于是燃气便绕流到环的背面,并发生膨胀,其压力下降。同时,燃气压力对环背的作用力使活塞环更紧地贴在气缸壁上。压力已有所降低的燃气,从第道气环的切口漏到第二道气环的上平面时,又把这道气环压贴在第二环槽的下端面上,于是,燃气又绕流到这个环的背面,再发生膨胀,其压力又进一步降低。
如此继续进行下去,从后一道气环漏出来的燃气,其压力和流速已经---减小,因而泄漏的燃气量也就很少了。因此,为数很少的几道切口相互错开的气环所构成的“迷宫式”封气装置,就---对气缸中的高压燃气进行有效的密封。
气环的断面形状及各环间隙处的气体压力
*** 气环的切口
气缸内的燃气漏入曲轴箱的主要通路是活塞环的切口,因此,切口的形状和装入气缸后的间隙大小对于漏入曲轴箱的燃气量有一定的影响,切口间隙过大,则漏气---,使发动机功率减小;间隙过小,活塞环受热膨胀后就有可能卡死或折断。切口间隙值一般为0.25~0.8mm。第道气环的温度,因而其切口间隙值。
气环的切口形状
直角形切口工艺性好;阶梯形切口的密封性好,但工艺性较差;斜口形切口,硬质合金刀具,斜角一般为30°或45°,其密封作用和工艺性均介于前两种之间,但其锐角部位在套装入活塞时容易折损;图中(d)为二冲程发动机活塞环的带防转销钉槽的切口,压配在活塞环槽中的销钉,是用来防止活塞环在工作中绕活塞中心线转动的。
*** 气环断面形状
气环的断面形状
*** 矩形环的优点是结构简单、制造方便、散热性好、废品率低;缺点主要是有泵油作用,容易造成机油消耗量过大并有可能形成燃烧室积炭。另外,矩形环的刮油性、磨合性及密封性较差,现代汽车基本不采用。
*** 锥面环的优点是与气缸壁的接触为线接触,密封和磨合性能较好,刮油作用明显,容易形成油膜以---润滑;缺点是传热性能较差。锥面环主要应用在除第道环外的其他环。
*** 扭曲环是当代汽车发动机广泛应用的一种活塞环,主要是因为扭曲环除具有锥面环的优点之外,还能减小泵油作用,减轻磨损、提高散热性能。安装扭曲环时应---注意:内圆切槽向上,外圆切槽向下,不能装反。
*** 梯形环的主要优点是能把沉积在环槽中的结焦挤出,从而避免了活塞环被黏结而出现折断,同时其密封性能---,使用---;缺点主要是上下两端面的精磨工艺较复杂。梯形环在热负荷较大的柴油发动机上使用较多。
*** 桶面环的优点是活塞的上下行程都可以形成楔形油膜以---润滑,对活塞在气缸内摆动的适应性好,接触面积小,有利于密封;缺点是凸圆弧面加工困难,多用于强化柴油发动机的第道环。
油 环
油环分为普通油环和组合油环两种。
普通油环是用合金铸铁制造的。其外圆面的中间切有一道凹槽,在凹槽底部加工出很多穿通的排油小孔或狭缝。油环上唇的上端面外缘一般均有倒角,可以使油环向上运动时能够形成油楔。机油可以把油环推离气缸壁,从而易于进入油环的切槽内。下唇的下端面外缘不倒角,这样向下刮油能力较强。鼻式油环和双鼻式油环的刮油能力---,但加工较困难。
油环及其刮油作用
油环的断面形状
对于由三个刮油钢片和两个弹性衬环组成的组合式油环,轴向衬环夹装在第二、第三刮油片之间,径向衬环使三个刮油片压紧在气缸壁上。这种油环的优点是,片环薄,对气缸壁的比压(单位面积上的压力)大,因而刮油作用强;三个刮油片是各自独立的,故对气缸的适应性好;重量轻;回油通路大。因此,组合油环在高速发动机上得到较广的应用。其缺点是制造成本高(片环的外表面必须镀铬,否则滑动性不好)。
一、钻孔与扩孔
1. 钻孔
钻孔是在实心资料上加工孔的地一道工序,钻孔直径一般小于 80mm 。钻孔加工有两种办法:一种是钻头旋转;另一种是工件旋转。上述两种钻孔办法发作的差错是不相同的,在钻头旋转的钻孔办法中,因为切削刃不对称和钻头刚性不足而使钻头引偏时,被加工孔的中心线会发作偏斜或不直,但孔径---不变;而在工件旋转的钻孔办法中则相反,钻头引偏会引起孔径改变,而孔中心线仍然是直的。
常用的钻孔刀具有:麻花钻、中心钻、深孔钻等,其中常用的是麻花钻,硬质合金刀具材料,其直径规格为 φ0.1-80mm。
因为构造上的约束,钻头的曲折刚度和扭转刚度均较低,加之定心性不好,钻孔加工的精度较低,一般只能到达 it13~it11;外表粗糙度也较大,
ra
一般为 50~12.5μm;但钻孔的金属切除率大,切削功率高。钻孔首要用于加工要求不高的孔,例如螺栓孔、螺纹底孔、油孔等。对于加工精度和外表要求较高的孔,则应在后续加工中经过扩孔、铰孔、镗孔或磨孔来到达。
2. 扩孔
扩孔是用扩孔钻对已经钻出、铸出或锻出的孔作进一步加工,以扩大孔径并进步孔的加工,扩孔加工既能够作为精加工孔前的预加工,也能够作为要求不高的孔的终究加工。扩孔钻与麻花钻类似,但刀齿数较多,没有横刃。
与钻孔比较,扩孔具有下列特色:(1)扩孔钻齿数多(3~8个齿)、导向性好,切削比较稳定;(2)扩孔钻没有横刃,切削条件好;(3)加工余量较小,容屑槽能够做得浅些,钻芯能够做得粗些,刀体强度和刚性较好。扩孔加工的精度一般为
it11~it10
级,外表粗糙度ra为12.5~6.3μm。扩孔常用于加工直径小于
的孔。在钻直径较大的孔时(d ***30mm ),常先用小钻头(直径为孔径的 0.5~0.7 倍)预钻孔,然后再用相应尺度的扩孔钻扩孔,这样能够进步孔的加工和出产功率。
扩孔除了能够加工圆柱孔之外,还能够用各种特殊形状的扩孔钻(亦称锪钻)来加工各种沉头座孔和锪平端面示。锪钻的前端常带有导向柱,用已加工孔导向。
二、铰孔
铰孔是孔的精加工办法之一,在出产中运用很广。对于较小的孔,相对于内圆磨削及精镗而言,铰孔是一种较为经济实用的加工办法。
1. 铰刀
铰刀一般分为手用铰刀及机用铰刀两种。手用铰刀柄部为直柄,作业部分较长,导向作用较好,手用铰刀有整体式和外径可调整式两种结构。机用铰刀有带柄的和套式的两种结构。铰刀不仅可加工圆形孔,也可用锥度铰刀加工锥孔。
2. 铰孔工艺及其运用
铰孔余量对铰孔的影响很大,余量太大,铰刀的负荷大,切削刃很快被磨钝,不易取得光洁的加工外表,尺度公役也不易---;余量太小,不能去掉上工序留下的刀痕,天然也就没有改进孔加工的作用。一般粗铰余量取为0.35~0.15mm,精铰取为
01.5~0.05mm。
为防止发作积屑瘤,铰孔一般选用较低的切削速度(高速钢铰刀加工钢和铸铁时,v <8m/min)进行加工。进给量的取值与被加工孔径有关,孔径越大,进给量取值越大,高速钢铰刀加工钢和铸铁时进给量常取为
0.3~1mm/r。
铰孔时必须用恰当的切削液进行冷却、光滑和清洗,以防止发作积屑瘤并及时铲除切屑。与磨孔和镗孔比较,铰孔出产率高,容易---孔的精度;但铰孔不能校对孔轴线的方位差错,孔的方位精度应由前工序---。铰孔不宜加工阶梯孔和盲孔。
铰孔尺度精度一般为 it9~it7级,外表粗糙度ra一般为
3.2~0.8
μm。对于中等尺度、精度要求较高的孔(例如it7级精度孔),钻—扩—铰工艺是出产中常用的典型加工计划。
三、镗孔
镗孔是在预制孔上用切削刀具使之扩大的一种加工办法,镗孔作业既能够在镗床上进行,也能够在车床上进行。
1. 镗孔办法
镗孔有三种不同的加工办法。
(1)工件旋转,刀具作进给运动 在车床上镗孔大都属于这种镗孔办法。工艺特色是:加工后孔的轴心线与工件的反转轴线一致,孔的圆度首要取决于机床主轴的反转精度,孔的轴向几许形状差错首要取决于刀具进给方向相对于工件反转轴线的方位精度。这种镗孔办法适于加工与外圆外表有同轴度要求的孔。
(2)刀具旋转,工件作进给运动 镗床主轴带动镗刀旋转,作业台带动工件作进给运动。
(3)刀具旋转并作进给运动 选用这种镗孔办法镗孔,镗杆的悬伸长度是改变的,镗杆的受力 变形也是改变的,靠近主轴箱处的孔径大,硬质合金刀具参数,远离主轴箱处的孔径小,构成锥孔。此外,镗杆悬伸长度增大,主轴因自重引起的曲折变形也增大,被加工孔轴线将发作相应的曲折。这种镗孔办法只适于加工较短的孔。
2. 金刚镗
与一般镗孔比较,金刚镗的特色是背吃刀量小,进给量小,切削速度高,它能够取得---的加工精度(it7~it6)和很光洁的外表(ra为
0.4~0.05
μm)。金刚镗初用金刚石镗刀加工,现在普遍选用硬质合金、cbn和人造金刚石刀具加工。首要用于加工有色金属工件,也可用于加工铸铁件和钢件。
金刚镗常用的切削用量为:背吃刀量预镗为 0.2~0.6mm,终镗为0.1mm ;进给量为
0.01~0.14mm/r
;切削速度加工铸铁时为100~250m/min ,加工钢时为150~300m/min ,加工有色金属时为
300~2000m/min。
为了---金刚镗能到达较高的加工精度和外表,所用机床(金刚镗床)须具有较高的几许精度和刚度,机床主轴支承常用精细的角触摸球轴承或静压滑动轴承,高速旋转零件须经经确平衡;此外,进给机构的运动必须十分平稳,---作业台能做平稳低速进给运动。
金刚镗的加工---,出产功率高,在大批大量出产中被广泛用于精细孔的终究加工,如发动机气缸孔、活塞销孔、机床主轴箱上的主轴孔等。但须引起留意的是:用金刚镗加工黑色金属制品时,只能运用硬质合金和cbn制造的镗刀,不能运用金刚石制造的镗刀,因金刚石中的碳原子与铁族元素的亲和力大,刀具寿数低。
3. 镗刀
镗刀可分为---镗刀和双刃镗刀。
硬质合金刀具-昂迈工具(在线咨询)-硬质合金刀具材料由常州昂迈工具有限公司提供。常州昂迈工具有限公司坚持“以人为本”的企业理念,拥有一支技术---的员工队伍,力求提供---的产品和服务回馈社会,并欢迎广大新老客户光临惠顾,真诚合作、共创美好未来。昂迈工具——您可---的朋友,公司地址:江苏省常州市西夏墅镇翠屏湖路19号13栋,联系人:黄明政。
联系我们时请一定说明是在100招商网上看到的此信息,谢谢!
本文链接:https://tztz261837a2.zhaoshang100.com/zhaoshang/218677500.html
关键词: